ALTERAZIONI MINERALI INDOTTE DA FARMACI

I cambiamenti più comuni sono quelli riguardanti potassio, sodio, magnesio, ferro, calcio, zinco e rame. In effetti, alcuni farmaci possono aumentare l’escrezione di potassio e la ritenzione di sodio, o ridurre l’assorbimento o il rilascio di iodio, ridurre l’assorbimento di ferro e zinco e aumentare i livelli di rame.

L’ipopotassiemia è frequentemente associata ai diuretici (diuretici dell’ansa e tiazidici), stimolanti β-adrenergici o agenti lassativi, così come alcuni anticorpi monoclonali usati in oncologia. L’iperkaliemia può verificarsi anche durante la terapia con inibitori del sistema renina-angiotensina-aldosterone , ACE-inibitori, bloccanti del recettore dell’angiotensina II (ARB), antagonisti del recettore dell’aldosterone, β-bloccanti, agenti antinfiammatori non steroidei (FANS), eparine , immunosoppressori (es. tacrolimus, ciclosporina), corticoidi minerali e glucocorticoidi, digossina

Un certo numero di farmaci può causare ipomagnesiemia [1]

I farmaci antibatterici, come le tetracicline, formano un complesso insolubile con cationi metallici; gli antiacidi abbassano il pH gastrico e causano una sottoregolazione del trasportatore intestinale attivo per il magnesio TRPM6, mentre i tiazidici e i diuretici dell’ansa impediscono il riassorbimento del magnesio a livello renale. Alcuni agenti antineoplastici (es. Cisplatino) e pillole anticoncezionali causano un aumento dell’escrezione renale di magnesio. Infine, anche gli inibitori della calcineurina e i leganti intestinali del fosfato a base di ferro sono associati all’ipomagnesiemia [2].

La carenza di ferro invece può essere dovuta a un ridotto assorbimento, causato principalmente da antibiotici come tetracicline e chinoloni e da farmaci antisecretori gastrici, ovvero antagonisti dei recettori PPI e H2. La secrezione acida gastrica, infatti, facilita l’assorbimento del ferro libero, consentendo la sua conversione nella forma ferrosa più assorbibile di quella ferrica; quindi, nel ridurre l’acidità gastrica, l’assorbimento alimentare di questo minerale è meno efficiente.

Una condizione di ipocalcemia può essere il risultato di quattro diverse condizioni : ipoparatiroidismo, ipovitaminosi D, agenti leganti il ​​calcio o alterato riassorbimento osseo. I farmaci più spesso associati all’ipocalcemia sono i diuretici dell’ansa (per una maggiore escrezione di calcio), agenti chelanti (es. etilendiamminotetracetato, citrato, fosfato), farmaci antineoplastici (es. cisplatino, leucovorin, 5-fluorouracile, nab-paclitaxel, axitinib), bifosfati, calcitonina e denosumab (un anticorpo monoclonale usato per trattare l’osteoporosi).

  1. – Gröber, U. Magnesium and Drugs. Int. J. Mol. Sci. 2019, 20, 2094
  2. – Liamis, G.; Hoorn, E.J.; Florentin, M.; Milionis, H. An Overview of Diagnosis and Management of Drug-Induced Hypomagnesemia. Pharmacol. Res. Perspect. 2021, 9, e00829. 

NUTRIZIONE PREDITTIVA

genetica, diabete e sovrappeso dr. Marco Zanetti

Con la scoperta del Dna e la sua decifrazione completa, si sono sviluppati negli anni delle scienze predittive che analizzano le mutazioni genetiche che portano a sviluppare malattie se non corrette, utili ad esempio in gravidanza, ma anche test di predizione che analizzano piccole mutazioni presenti su determinati geni che determinano una maggiore predisposizione a sviluppare malattie e che solo un comportamento corretto e una azione di prevenzione potrà prevenire

Attraverso test genetici specifici si possono quindi adottare indicazioni alimentari specifici atti a rallentare l’insorgenza di possibili patologie. Ovviamente non si tratta di certezze. A volte anche se ci sono predisposizioni specifiche non sappiamo in quanto tempo e se svilupperemo la patologia. Inoltre attuare delle indicazioni alimentari specifiche potrebbe aiutare per lo meno a fare la cosa giusta per noi

Oggi parliamo da un punto di vista genetico delle predisposizioni al sovrappeso e al diabete, due problemi metabolici spesso correlati tra loro

METABOLISMO INSULINA

Il diabete è una malattia cronica caratterizzata dalla presenza di elevati livelli di glucosio nel sangue (iperglicemia) e dovuta a un’alterata quantità o funzione dell’insulina. L’insulina è l’ormone, prodotto dal pancreas, che consente al glucosio l’ingresso nelle cellule e il suo conseguente utilizzo come fonte energetica. Quando questo meccanismo è alterato, il glucosio si accumula nel circolo sanguigno.

Il polimorfismo TCF7L2 (rs7903146) è stato associato ad un aumentato rischio di diabete di tipo II. Questo polimorfismo è associato a ridotta secrezione insulinica in soggetti a rischio di diabete. L’aumentato rischio sarebbe dovuto alla disfunzione b-cellulare ed all’alterato metabolismo delle incretine. Infatti, il TCF7L2 è un fattore di trascrizione nucleare che, quando è attivato, è capace di influenzare la differenziazione cellulare e di aumentare la produzione endogena dell’ormone GLP-1. Presenza allele T: possibile aumentato rischio per diabete tipo 2.

Il gene PPARG codifica invece per un recettore del glitazone che si trova soprattutto nelle cellule adipose. L’attivazione di PPARG aumenta la sensibilità all’insulina ed è implicato anche nello sviluppo degli adipociti. La presenza dell’allele G è associata a possibile predisposizione all’aumento di peso e rischio per il diabete tipo 2.

CONTROLLO DEL PESO

L’obesità è una malattia multifattoriale che ha una predisposizione genetica ma che necessita di condizioni

ambientali, abitudini, per manifestarsi. Il gene FTO (gene obesità-associato) svolge un ruolo fondamentale nella regolazione del metabolismo lipidico e della lipolisi, cioè la capacità individuale di mobilizzare il grasso corporeo.

Numerosi studi hanno dimostrato come il polimorfismo rs9939609 moduli la suscettibilità all’accumulo di peso corporeo. La presenza dell’allele A è associata ad un possibile aumento del peso.

Il gene MC4R codifica per una proteina chiamata recettore per la melancortina-4. L’attivazione di questo recettore sopprime il senso della fame, quindi il suo deficit provoca: ingestione di cibo in eccesso già nel primo anno di vita, aumento dei livelli di insulina e della massa grassa. Nel merito l’allele C è più sfavorevole e predispone all’aumento di peso, infatti è stato dimostrato come i livelli di espressione di MC4R siano correlati con la distribuzione del grasso corporeo e la percentuale di assunzione di energia da carboidrati e grassi.

Il gene Leptin codifica per l’ormone proteico leptina che controlla il peso corporeo, regolando l’assunzione di cibo e dispendio di energia. La leptina è uno dei principali ormoni prodotti dal tessuto adiposo e agisce nella regolazione del bilancio delle risorse energetiche. La leptina arriva nel Sistema Nervoso Centrale (SNC) attraverso la barriera ematoencefalica mediante un meccanismo di trasporto mediato da specifici recettori. Questo segnale di natura ormonale ha lo scopo di informare il SNC sullo stato di riserve energetiche dell’individuo. Agisce regolando l’apporto alimentare attraverso l’inibizione della sintesi e del rilascio del neuropeptide Y (NPY) che stimola l’appetito. Presenza allele A (Leptin): possibile fattore di rischio cardiovascolare e tendenza all’obesità.

Il NPY, codificato dal omonimo gene, è un potente stimolatore dell’appetito ed ha uno spiccato effetto oressizzante. Tuttavia, livelli elevati di NPY possono provocare ipotensione, ipotermia e depressione dei centri respiratori. È inoltre in grado di provocare vasocostrizione delle arterie cerebrali. La localizzazione di NPY nell’ippocampo lo rende importante nei processi di apprendimento e memoria; in questa regione del cervello è capace di stimolare la proliferazione neuronale, ciò è in accordo con le sue proprietà antidepressive. Presenza allele C (NPY): possibile fattore di rischio cardiovascolare e predisposizione all’aumento di peso

Dieta e genetica: nuove prospettive

AUTORE CRISTIANA LO NIGRO

Articolo scritto dalla Dott.ssa Cristiana Lo Nigro

Già Ippocrate, il padre della medicina, che visse 400 anni prima della nascita di Cristo, aveva ben compreso l’importanza dell’alimentazione per il nostro benessere psico-fisico, tanto da sostenere “Fa’ che il cibo sia la tua medicina e che la medicina sia il tuo cibo”.

Al giorno d’oggi non soltanto è noto quanto l’alimentazione influisca sullo sviluppo di numerose patologie multifattoriali (malattie cardiovascolari, diabete, tumori), ma si iniziano a conoscere anche le basi molecolari dell’influenza reciproca tra geni e dieta.

La variabilità genetica individuale influenza il modo in cui i nutrienti possono essere assimilati, metabolizzati, accumulati ed escreti: in poche parole, ciascuno risponde a modo suo alle molecole introdotte nell’organismo e, in generale, agli stili alimentari e di vita.

Lo studio delle interazioni tra nutrienti e composti della dieta con i comparti cellulari e le reazioni biochimiche viene approfondito mediante due nuove discipline della genetica e della biologia molecolare: la nutrigenetica (o genetica nutrizionale) e la nutrigenomica (o genomica nutrizionale).

La prima studia l’impatto della diversità genetica degli individui sul metabolismo dei nutrienti e dei composti introdotti con la dieta. Il DNA, che è proprio di ogni individuo, influenza la risposta dell’organismo ai vari alimenti e la conseguente ricaduta sulla salute.

La nutrigenomica studia il rapporto tra DNA e genoma, quindi l’impatto dei diversi elementi (macronutrienti, micronutrienti e composti bioattivi) introdotti con la dieta sul nostro genoma e cerca di comprendere quanto la dieta influenzi l’accensione o il silenziamento del messaggio contenuto nei geni.

A queste discipline recentemente si è aggiunta l’epigenetica nutrizionale che studia le interazioni tra i componenti della dieta e le modifiche dell’espressione genica che avvengono senza modifiche della sequenza del DNA.

Le vecchie conoscenze in ambito di alimentazione ritenevano che una stessa dieta producesse gli stessi effetti su tutti gli individui, ma già nel XX secolo iniziavano a essere individuati alcuni errori congeniti del metabolismo, tra cui la Fenilchetonuria, l’esempio più “classico” di patologia in ambito nutrigenetico.

La fenilchetonuria come altri difetti congeniti del metabolismo, quali la galattosemia, la tirosinemia, la malattia di Wilson, l’ipercolesterolemia familiare, sono condizioni rare e monogeniche, in cui sono le mutazioni di un singolo gene in un singolo individuo a determinare la malattia.

La situazione diventa complessa nelle patologie di tipo poligenico/multifattoriale, in cui la genetica contribuisce solo in parte all’espressione della malattia.

In patologie come l’obesità, il diabete, l’ipertensione, i tumori, ad esempio, il contributo delle varianti genetiche è ancora poco chiaro.

Tuttavia la ricerca in questi ambiti progredisce rapidamente e i recenti approcci mediante le tecnologie di nuova generazione hanno permesso di individuare varianti genetiche/genomiche associate allo sviluppo di determinate malattie o protettive nei confronti delle stesse, ma i dati finora sono ancora parziali e non conclusivi, nonostante gli ampi campioni di popolazione analizzati.

Da questi nuovi campi di studio si auspica che possano scaturire interventi di prevenzione e di cura atti a controllare alcune patologie cronico-degenerative determinate dalla cattiva interazione geni-alimenti, soprattutto mediante la modifica di comportamenti alimentari in alcuni momenti fondamentali della vita dell’individuo. Per esempio, secondo alcuni studi, i primi mille giorni, potrebbero permettere di intervenire in ambito di educazione alla nutrizione per prevenire patologie quali l’obesità infantile e la sindrome metabolica dell’adulto, mediante l’induzione di modifiche genetiche ed epigenetiche.

È ormai accertato che l’interazione di ciò che mangiamo con i nostri geni si ripercuote sul benessere e dal momento che l’interazione degli alimenti con l’organismo dipende dal DNA individuale, si deve tendere il più possibile ad una nutrizione personalizzata.

In ogni settore la personalizzazione delle cure, d’altra parte, è un obiettivo prioritario della medicina contemporanea.

Per concludere ricordiamo che la ricerca è estremamente attiva, con la finalità di rendere sempre più numerose le ricadute pratiche. A tal fine, è auspicabile la collaborazione tra nutrizionisti e laboratori di genetica, per fornire al professionista sanitario il profilo genetico del soggetto, in grado di guidare il consiglio alimentare più adatto per le sue esigenze di benessere e di mantenimento della salute a lungo termine.